Superledere, der virker ved stuetemperatur, vil føre os til den fantastiske teknologi

Superledere kan blive kaldt en af de mest interessante og fantastiske materialer i naturen. Det er hævet over enhver logisk diskussion af kvantemekaniske effekter føre til, at superledere under den kritiske temperatur helt forsvinder i den elektriske modstand. En af denne ejendom er nok til at sætte gang i fantasien. Strøm, der kan løbe uafbrudt, uden at miste energi, betyder, at en transmission af energi med næsten ingen tab i kablerne. Når vedvarende energi begynder at dominere i netværk og med høj spænding transmission på tværs af kontinenter vil blive løbende kabler uden tab vil føre til betydelige besparelser.

Desuden, de superledende tråd, der transporterer strøm uden tab, vil det være et godt lager af energi. I modsætning til batterier, som i sidste ende forværres, hvis modstanden er virkelig nul, vil det være muligt at finde en superleder i en milliard år, og finde ud af, at det flyder den samme strøm. Energi kan opbevares på ubestemt tid!

I mangel af modstand gennem de superledende tråd, ville det være muligt at passere en kraftig strøm, og at det magnetiske felt af utrolig magt.

De kunne bruges til svævende tog og utrolig acceleration, omdanne det samlede transportsystem. Kan anvendes i kraftværker, der erstatter de konventionelle metoder, der roterer turbine i et magnetisk felt til at generere elektricitet, og i kvante-computere, som nuller og ettaller (normal bits) er erstattet med det nuværende med uret eller mod uret for strøm i superlederen.

Arthur C. Clarke sagde engang, at der er tilstrækkelig avanceret teknologi er umulig at skelne fra magi; superledere helt sikkert som en magisk enhed. Hvorfor gør de stadig ikke ændret vores verden? Problemet er, at den kritiske temperatur.

De fleste af disse materialer, hvis kritiske temperatur er flere hundrede grader under frysepunktet. Fra superledere har også et kritisk magnetfelt uden for det magnetiske felt af en vis intensitet, at de ikke længere kan arbejde. Det viste sig, at materialer med intern høj kritiske temperatur og ofte tilbyde den mest magtfulde magnetfelt, når den afkøles væsentligt under denne temperatur.

Dette betyder, at anvendelse af superledere har hidtil været begrænset til situationer, hvor du har råd til køling af komponenterne til en temperatur på næsten det absolutte nulpunkt: partikelacceleratorer og forsøgsreaktorer af nuklear fusion, for eksempel.

Men selv om nogle aspekter af superledende teknologi, der forhindrer dem i brugen af høj-temperatur superledere, og søgningen fortsætter. Mange fysikere mener stadig, at superledere, der arbejder ved stuetemperatur, kan eksistere. Og en sådan opdagelse ville bane vejen utrolige nye teknologier.

I søgningen efter superledere, der virker ved stuetemperatur

Efter Heike kamerlingh Onnes ved et uheld opdagede, superledning, og forsøger at bevise teorien om Lord Kelvin, at modstanden vil stige, efterhånden som temperaturen falder, teoretikere, der forsøger at forklare den nye ejendom i håb om, at hans forståelse vil gøre det muligt for os at fremstille superledere, der virker ved stuetemperatur.

Så der var BCS-teorien (Bardeen, Cooper, sniffer), hvilket forklarer nogle af de egenskaber af superledere. Det blev også forudset, at drømmen om teknologer, superledere ved stuetemperatur kan ikke være muligt, at den maksimale temperatur superledning i henhold til BCS teorien, at det kun var 30 grader over det absolutte nulpunkt.

I 1980’erne ændrede alt sig, takket være opdagelsen af usædvanlig høj-temperatur superledning. “Høj temperatur” er stadig meget cool: den højeste temperatur superledning beløb sig til -70 grader til hydrogensulfid ved ekstremt højt tryk. Ved normalt tryk, og den øvre grænse er -140 grader. Desværre, høj-temperatur superledere, som kræver forholdsvis billige flydende nitrogen i stedet for flydende helium til køling er for det meste sprødt keramik, der er ekstremt vanskeligt at gøre til wire og anvende i praksis.

I betragtning af de begrænsninger af høj-temperatur superledere, forskere mener fortsat, at der er en bedre løsning afventer opdagelse — en utrolig nyt materiale, som vil gøre superledning overkommelige, praktiske, og vigtigst af alt — arbejder ved stuetemperatur.

Spændende tips

Uden en detaljeret teoretisk forståelse af dette fænomen — trods betydelige fremskridt, der er gjort hele tiden — nogle gange er forskerne føler, at de gør en gætterier forsøge at finde egnede materialer. Det er som at forsøge at gætte det telefonnummer, der er sammensat af periodiske tabel er elementer i stedet for tal. Men udsigten er stadig meget bekymret. Nobelprisen og “fagre nye verden” af energi og elektricitet — ikke en dårlig belønning for en vellykket resultat.

Nogle undersøgelser fokuserer på cuprates, komplekse krystaller, der indeholder lag af kobber og ilt-atomer. Forbindelse cuprates med forskellige elementer, eksotiske stoffer som kviksølv, barium-calcium-kobberoxid, skabe den bedste superledere, der er kendt i dag.

Forskerne har også fortsætte med at rapportere anomale og uventede nyheder, at gennemblødt grafit kan fungere som superleder, der opererer ved stuetemperatur, men der er ingen tegn på at denne nyhed kan sættes på basis af teknologi.

I begyndelsen af 2017, udforske de mest ekstreme og eksotiske former for sagen, at vi kan skabe på Jorden, forskerne formået at komprimere brinten til metal stat. For at de havde behov for et pres, der er større end trykket i kernen af Jorden, og der er tusinder af gange større end på bunden af havet. Nogle forskere i dette felt — fysik condensed noget — overhovedet i tvivl om, at metallisk hydrogen var i stand til at producere.

Men det menes, at metallisk hydrogen kan være en superleder, der arbejder ved stuetemperatur. Men arbejdet med prøver, der er meget vanskeligt, fordi selv diamanter, der indeholder metallisk hydrogen, kan ikke modstå en katastrofal pres.

Superledning — eller adfærd, i høj grad ligner, blev også observeret i yttrium-barium-kobber-oxid ved stuetemperatur i 2014. Det eneste problem er, at elektron transport blev holdt kun en lille brøkdel af et sekund og krævede bombardement af materialet ved laser pulser.

Ikke meget praktisk — Ja. Interessant — selvfølgelig!

Og andre nye materialer udviser interessante egenskaber. Nobelprisen i fysik i 2016, hvor der blev uddelt for teoretisk arbejde, der kendetegner topologiske isolatorer — materialer udviser lignende mærkelige quantum adfærd. De kan betragtes som perfekt isolatorer, er den samlede masse af det materiale, men en usædvanlig god superledere i et tyndt lag på overfladen.

Microsoft bygger på topologiske isolatorer som en vigtig del af en kvantecomputer. Også de betragtes som potentielt vigtige komponenter i det lille kredsløb.

Nogle bemærkelsesværdige egenskaber af elektron transport blev også observeret i den nye “to-dimensionelle” strukturer, som graphene, men af andre elementer. Disse er materialer med en tykkelse af et atom eller molekyle.

Superledning ved stuetemperatur er fortsat vanskeligt og spændende, og som var for over et århundrede. Det er uklart, om det kan være en superleder, der opererer ved stuetemperatur, men opdagelsen af høj-temperatur superledere er et lovende tegn på, at en usædvanlig og meget nyttigt kvantemekaniske effekter kan være uventet.

Måske i fremtiden — med hjælp fra kunstig intelligens eller opdagelser af camerlingo-onesof det 21 århundrede, disse teknologier vil blive umulig at skelne fra magi.

Superledere, der virker ved stuetemperatur, vil føre os til den fantastiske teknologi
Ilya Hel


Date:

by